7 research outputs found

    There are 174 Subdivisions of the Hexahedron into Tetrahedra

    Full text link
    This article answers an important theoretical question: How many different subdivisions of the hexahedron into tetrahedra are there? It is well known that the cube has five subdivisions into 6 tetrahedra and one subdivision into 5 tetrahedra. However, all hexahedra are not cubes and moving the vertex positions increases the number of subdivisions. Recent hexahedral dominant meshing methods try to take these configurations into account for combining tetrahedra into hexahedra, but fail to enumerate them all: they use only a set of 10 subdivisions among the 174 we found in this article. The enumeration of these 174 subdivisions of the hexahedron into tetrahedra is our combinatorial result. Each of the 174 subdivisions has between 5 and 15 tetrahedra and is actually a class of 2 to 48 equivalent instances which are identical up to vertex relabeling. We further show that exactly 171 of these subdivisions have a geometrical realization, i.e. there exist coordinates of the eight hexahedron vertices in a three-dimensional space such that the geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for these configurations and show in particular subdivisions of hexahedra with 15 tetrahedra that have a strictly positive Jacobian

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    Identifying combinations of tetrahedra into hexahedra: a vertex based strategy

    Full text link
    Indirect hex-dominant meshing methods rely on the detection of adjacent tetrahedra an algorithm that performs this identification and builds the set of all possible combinations of tetrahedral elements of an input mesh T into hexahedra, prisms, or pyramids. All identified cells are valid for engineering analysis. First, all combinations of eight/six/five vertices whose connectivity in T matches the connectivity of a hexahedron/prism/pyramid are computed. The subset of tetrahedra of T triangulating each potential cell is then determined. Quality checks allow to early discard poor quality cells and to dramatically improve the efficiency of the method. Each potential hexahedron/prism/pyramid is computed only once. Around 3 millions potential hexahedra are computed in 10 seconds on a laptop. We finally demonstrate that the set of potential hexes built by our algorithm is significantly larger than those built using predefined patterns of subdivision of a hexahedron in tetrahedral elements.Comment: Preprint submitted to CAD (26th IMR special issue

    Solving the maximum weight independent set problem : application to indirect hex-mesh generation

    No full text
    We propose a heuristic method to find independent sets of large weight in graphs, used as part of an algorithm for indirect generation of hex-dominant meshes. Our method computes an initial solution using a local search algorithm. This algorithm was implemented using priority queues to select which action should be performed at each iteration in order to improve its performances. The initial solution is then iteratively improved by finding the optimal solution of the problem for subgraphs of up to a few hundred vertices. For this purpose, we use a branch and bound solver. This solver partitions the vertex set of the graph into cliques at each node of the search tree. This partition allows for the computation of an upper bound on the solution, which is used to reduce the number of solutions enumerated by the algorithm. We ran our algorithm on graphs of more than one million vertices, and showed that it produces better results than the greedy methods used in existing indirect meshing algorithms.Master [120] : ingénieur civil en informatique, Université catholique de Louvain, 201

    A 44-element mesh of Schneiders' pyramid: Bounding the difficulty of hex-meshing problems

    No full text
    This paper shows that constraint programming techniques can successfully be used to solve challenging hex-meshing problems. Schneiders' pyramid is a square-based pyramid whose facets are subdivided into three or four quadrangles by adding vertices at edge midpoints and facet centroids. In this paper, we prove that Schneiders' pyramid has no hexahedral meshes with fewer than 18 interior vertices and 17 hexahedra, and introduce a valid mesh with 44 hexahedra. We also construct the smallest known mesh of the octagonal spindle, with 40 hexahedra and 42 interior vertices. These results were obtained through a general purpose algorithm that computes the hexahedral meshes conformal to a given quadrilateral surface boundary. The lower bound for Schneiders'pyramid is obtained by exhaustively listing the hexahedral meshes with up to 17 interior vertices and which have the same boundary as the pyramid. Our 44-element mesh is obtained by modifying a prior solution with 88 hexahedra. The number of elements was reduced using an algorithm which locally simplifies groups of hexahedra. Given the boundary of such a group, our algorithm is used to find a mesh of its interior that has fewer elements than the initial subdivision. The resulting mesh is untangled to obtain a valid hexahedral mesh

    Solving the Maximum Weight Independent Set Problem: Application to Indirect Hexahedral Mesh Generation

    No full text
    Indirect hex-dominant meshing methods rely on the choice of a subset of compatible hexahedra among a large set of candidate hexahedra generated by combining tetrahedra. We propose a new parallel algorithm to choose this subset of compatible hexahedra. Our algorithm computes a near-optimal solution to the Maximum Weight Independent Set problem on the incompatibility graph of the candidate hexahedra. An initial solution computed with a greedy algorithm is iteratively improved by optimizing subgraphs containing up to a few hundred vertices. This procedure uses a branch and bound algorithm and is done in parallel on multiple disjoint subgraphs. First results are presented on large sets of candidate hexahedra and we show that meshes containing up to 10\% more hexahedra than greedy methods can be computed within a few seconds
    corecore